skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Osia, Nnamdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Performing a direct match between images from different spectra (i.e., passive infrared and visible) is challenging because each spectrum contains different information pertaining to the subject’s face. In this work, we investigate the benefits and limitations of using synthesized visible face images from thermal ones and vice versa in cross-spectral face recognition systems. For this purpose, we propose utilizing canonical correlation analysis (CCA) and manifold learning dimensionality reduction (LLE). There are four primary contributions of this work. First, we formulate the cross-spectral heterogeneous face matching problem (visible to passive IR) using an image synthesis framework. Second, a new processed database composed of two datasets consistent of separate controlled frontal face subsets (VIS-MWIR and VIS-LWIR) is generated from the original, raw face datasets collected in three different bands (visible, MWIR and LWIR). This multi-band database is constructed using three different methods for preprocessing face images before feature extraction methods are applied. There are: (1) face detection, (2) CSU’s geometric normalization, and (3) our recommended geometric normalization method. Third, a post-synthesis image denoising methodology is applied, which helps alleviate different noise patterns present in synthesized images and improve baseline FR accuracy (i.e. before image synthesis and denoising is applied) in practical heterogeneous FR scenarios. Finally, an extensive experimental study is performed to demonstrate the feasibility and benefits of cross-spectral matching when using our image synthesis and denoising approach. Our results are also compared to a baseline commercial matcher and various academic matchers provided by the CSU’s Face Identification Evaluation System. 
    more » « less